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Abstract

A dynamic stiffness theory of a three-layered sandwich beam is developed and subsequently used to investigate its
free vibration characteristics. This is based on an imposed displacement field so that the top and bottom layers behave
like Rayleigh beams, whilst the central layer behaves like a Timoshenko beam. Using Hamilton’s principle the govern-
ing differential equations of motion of the sandwich beam are derived for the general case when the properties of each
layer are dissimilar. For harmonic oscillation the solutions of these equations are found in exact analytical form, taking
full advantage of the application of symbolic computation, which has also been used to obtain the amplitudes of axial
force, shear force and bending moment in explicit analytical forms. The boundary conditions for responses and loads at
both ends of the freely vibrating sandwich beam are then imposed to formulate the dynamic stiffness matrix, which
relates harmonically varying loads to harmonically varying responses at the ends. Using the Wittrick—Williams algo-
rithm the natural frequencies and mode shapes of some representative problems are obtained and discussed. The impor-
tant degenerate case of a symmetric sandwich beam is also investigated.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Sandwich construction offers the structural designer many attractive features, such as high specific stiff-
ness, good buckling resistance, formability into complex shapes, easy reparability, and so on. Thus the
analysis of such structural systems has been investigated—more or less continuously—for well over half a cen-
tury. There are some excellent papers which contribute to the state-of-the-art, review earlier work and
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provide a long list of references on the subject, see for example, Frostig and Baruch (1994), Silverman
(1995), Sainsbury and Zhang (1999) and Austin and Inman (2000).

By introducing visco-elasticity into the central element, good energy dissipation may be realised, but this
paper does not deal with such non-conservative systems, but examines, in a way that has not been previ-
ously presented, the dynamical behaviour of an asymmetric three-layered element, namely a beam with
three distinct components.

DiTaranto (1965), Mead and Sivakumaran (1966), Mead and Marcus (1969) and Mead (1982) are some
of the earlier investigators who have examined the free vibration problems of sandwich beams using analyt-
ical methods, with due attention to the shearing that occurs between layers. Any Newtonian approach must
take these shearing loads into account, with consequent complications in the analysis. Several other authors
(Sakiyama et al., 1996; Fasana and Marchesiello, 2001; Banerjee, 2003) have also addressed this problem
using an analytical model in which the top and bottom elements behave like beams in Bernoulli-Euler flex-
ure, with the central element deforming only in transverse shear. Further developments that extend this
model by adding a direct stress carrying capability to the central element can be found in He and Rao
(1993), Bhimaraddi (1995) and Sisemore and Darvennes (2002). In many of these earlier works, assumptions
such as the congruence of the top and bottom layers seriously restrict the value of the models.

The problems of modelling shears interacting between the layers can largely be side stepped by using an
energy model, and thus implicitly, but not explicitly, representing the interaction. In particular, the use of
Hamilton’s principle allows a model to be developed in which the best possible elastic representation is
achieved, subject to whatever restrictions are built into the analytical model. For example, a displacement
field may be imposed which allows each element to behave in a relevant manner and as long as the repre-
sentation can be justified, a good model will be realised.

This paper develops a model along these lines for the three-layered beam with no restrictions on the geo-
metric and physical properties of each element. The three elements all have, in general, a mean axial (or
longitudinal) motion as well as a common flexure and the system is fully coupled so that when the beam
flexes, it has longitudinal response and vice versa. This model is of eighth order, and therein lies the diffi-
culty in analytical development.

As is shown below, the completion of the analysis is achieved by using symbolic computation (Fitch,
1985; Rayna, 1986). This makes possible the development of a model in which the only approximations
introduced are in the choice of the displacement field. The end product of the investigation is the develop-
ment, and application, of the dynamic stiffness matrix of the three-layered beam. This retains all informa-
tion derived by solving the governing differential equations subject to the appropriate boundary conditions.
Thus the only source of error is in the choice of the displacement field.

The system of displacements used is as follows. All three layers have a common flexure. The top and
bottom layers of the beam are assumed to bend in such a way that the cross-section rotates so as to be
normal to the mid-plane flexure, as in the case of a Bernoulli-Euler beam, but with a longitudinal dis-
placement and rotatory inertia taken into account. Thus the axial displacement varies linearly through
the thickness. The central element also has a linear variation in axial displacement, but the cross-section
does not rotate so as to be normal to the common flexure, and necessarily shears. This is modelled as a
Timoshenko beam.

Such a procedure cannot generate a complete solution to the boundary value problem of the beam in
vibration because it does not allow for variation in the transverse shear (and any associated non-planar
bending). However, the likelihood is that the boundary zone between layers in which the shear changes rap-
idly is quite thin and so the inherent inaccuracy in the displacement field introduces only a small error into
the energy expressions formulated, and so does not degrade significantly the whole model.

The resulting set of differential equations, which governs the free vibration of the three-layered beam, is
of eighth order, which only degenerates into a simpler system of a sixth order flexure and second order lon-
gitudinal motion in the exceptional case when the top and bottom layers are identical. This is proved below.
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A resume of the analysis developed is as follows. Using the assumed displacement field, the axial direct
stresses, and any non-zero shear stresses, are evaluated, so that the expressions for the system kinetic and
strain energies are obtained. The resulting Lagrangian is used in applying Hamilton’s principle to obtain
the partial differential equations and boundary conditions of the beam. By assuming harmonic motion,
these partial differential equations are converted into total differential equations. These are further com-
bined into a single eighth order total differential equation with constant coefficients. This is solved to gen-
erate the analytical solution to the problem. A state vector of loads (forces and moments) and a state
vector of responses (displacements and rotations) are then expressed in terms of eight arbitrary constants
of integration. On eliminating these constants the state vector of loads is expressed in terms of the state
vector of response and this is the required dynamic stiffness matrix. From the outset the use of the sym-
bolic computation package REDUCE (Fitch, 1985; Rayna, 1986) has enabled the Lagrangian to be for-
mulated, the variational analysis to be undertaken, the governing differential equation and its solution,
together with eighth order matrix manipulation, to be carried out. It is therefore, reasonable to ascertain
that without resorting to a symbolic computation package such as REDUCE, the completion of the task
of determining the dynamic stiffness matrix might well have been impossible.

The model developed assumes an isotropic material, and cannot readily be extended to represent fibre-
reinforced laminated composite beams, as there would, in general, be a torsional response as well as the
assumed motion for such materials. For orthotropic materials where no such restriction applies, the given
analysis can readily be extended.

The theory has been programmed and applied to a number of cases, and the results are discussed and
compared with published ones wherever possible. As the proposed method is exact (within the assumed dis-
placement field), it can be used to provide a benchmark against which finite element and other studies may
be validated. It is of particular value in comparing higher harmonic response, where finite element methods
become less and less reliable as the mode number increases, whereas there is no corresponding loss of accu-
racy in the dynamic stiffness approach.

2. Theory
2.1. Derivation of the governing differential equations and solutions
In a rectangular Cartesian coordinate system Fig. 1 represents a three-layered sandwich beam with dis-

tinct element-1, 2 and 3 as shown. Each layer has its own geometric and material properties with a subscript
denoting the layer number. Thus the top layer has thickness /;, width b; and has a Young’s modulus Ej,

AY top face
h (l) Ui— V\/ h]_ 12
i Ug
U1+V\/ h1 12
h,  (2) core Uy
"o / e
Us—Ww hg /2
z hs (3 Us 8 8
> UgHW g /2
bottom face

Fig. 1. The coordinate system and notation for a three-layered sandwich beam.
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density p; cross-sectional area A; (=b1h;), and second moment of area I;. Layers 1 and 3 do not shear, so
their shear moduli are irrelevant, but layer 2 has shear modulus G;.

Following the description of the chosen displacement field given in the introduction it is readily ob-
served that the axial displacements vary linearly from u; — %‘w/ on the top to u; +h71w’ at the interface
between layers 1 and 2, and from u; — %w’ at the interface between layers 2 and 3 to us —&-%w’ at the
bottom of layer 3. Here, and later, primes denote partial differentiation with respect to x. The middle
layer has a consequential shear as its imposed motion is determined by the continuity of layers, and
an assumed linear variation across its thickness. (The mid-layer displacement u, in layer 2 is not further
used.)

It follows that the axial strain varies

h h .
from u) — ?lw” to u +71w” in layer 1
h h .
from u; + Elw” to u} — fw” in layer 2, and

h h .
from u} — fw” to uy + fw” in layer 3

In addition layer 2 will have shearing strain

1 1
v=w o = ()W [2) = (i — us o+ an) (1)
2 2
where
a=(h +2hs + h3)/2 (2)

Thus the entire strain system is known. For a linear isotropic material, the stresses and strain energy can
now be formulated. In developing the strain and kinetic energies, repeated use is made of the following well
known result.

If f{x) is a linear function of x varying from f; = f{x1) at x = x| to f, = f{x) at x = x, then

/xz{f(x)}zdx = —x)(ff + N2+ 17)/3 (3)

There are four sources of strain energy, three due to the axial strains in each layer and the fourth due to the
shearing strain in layer 2. These have the following expressions

1 k / 1 t "
Vl :_EIAI/ (ul)zdx—l——ElIl/ (W )de (4)
2 0 2 0

1 L h h
Vv = o /O [(ug)z + (upd) + (1) + (h1 - 5) U+ (51 - h3)u'3w"

1 !
g O = i+ B0 5)
1 L 1\2 1 L 71\ 2
V3:§E3A3/ () dx—|—§E3I3/ (') d (6)
0 0

—uz + aw')’

1 L (u
Vas = —szsz/ (s 5 dx (7)
2 A 7
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where V| and V3 are the strain energies of layers 1 and 3 due to normal strain and V,5 and Vg are the
strain energies of layer 2 due to normal and shearing strains respectively, and k, is the shear coefficient
or shape factor (<1) which is introduced because the effective shear in layer 2 will not be equal to y every-
where. Note that the bending properties of the core are properly represented although the term E,I, does
not appear explicitly in Eq. (5).

Thus the total strain energy V=V, + Voy+ Vog+ V3 is

1 [t 2 2 Exd 2 2 hs hy
V=5/ Ev ()" + Eih (W) + =3 {(u’l) gy + ()" + (hl—g)uiw/’(g—h3>u’3w//
0
1 kA, G
5 () =ik + h§><w”>2} o+ EsAs (1) Esly (W) =5 (un — s aw'f] dx (8)
2

In a similar way, the kinetic energy 7 is the sum of four quantities representing the axial motion of each
layer plus that due to transverse motion of the entire beam. Using an over dot to represent partial differ-
entiation with respect to time, these are

Ti= [ @)+ ) ds )

from layer 1,

L h h 1
T, = % [(01)2 + (i) + ity + (h1 - f) Wi + (71 - hz) Wity +- 2 (hi — hihy + hg)(“’,)z dx
0
(10)
from layer 2
1 L . \2 N2
T [ i) + 1)) d (1)
0
for layer 3, and
1 Lo
Ty = EM (W)~ dx (12)
0

from the complete beam in transverse motion.

In Egs. (9)(12) my = p1 4y, my = prA,, m3 = p3A3 and M = m; + m, + m3 represent the mass per unit
length for layers 1-3 and the complete beam respectively. Note that the rotatory inertia of the core has been
accounted for although the term p,/, does not appear explicitly in Eq. (10).

Thus T=T, + T, + T + T4 takes the following form

1 [ h h
T:—/ mii + py s (W) 4 22 (i) + it + (i) + (B — 2 i + (2 — hy )iy’
2 Jo 3 2 2
1 2 2y (/2 © )2 < \2 .2

Combining 7 and V from Egs. (13) and (8) the Lagrangian ¥ = T — V' takes the following form

2
— Cz(ug)2 = 2Csuyw" — 2Cquw" — C3(w”)2—C7uf
— 2C12u1u3 — Cgug — 2C11M1W/ — 2C10M3W’ — Cg(W’)z} dx (14)

1 L
7 - / {Bluf + 2Bgityits + Byit? + 2BsinW + 2ByicsW' . + Bs (W) + MW — C,(u})* — 2Cqu
0
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where
m m m
BI:m1+?2; BZZM3+?2; B3 p1[1+1—22(h%7h1h3+h§)+p3]3 (15)
_mz h] . _Wl2 l’l3 . _I’I’l2
By = 5 (2 hz)y Bs = 3 (hl 2>7 Bg = 3 (16)
E>A E»A4 E»A4
Ci=E4 + 23 2 G = 23 21 Esdy; Cy=El + 1222(h2 hihy + h3) + Esl; (17)
E>A, (hy E>A, h3 E>A5
= [ . = R — = 1
Cy 3 (2 h3>, Cs 6 </’l1 > e 6 (18)
kA>,G
C, = 2h22 2. Cy=Cy; Cy=d*Cy (19)
2
Cip=—aCy;; Cjp=-Cy; Cp=-0C (20)

with a given in Eq. (2).
Applying Hamilton’s principle ¢ j;'f,iﬁdt = 0 and using ¥ from Eq. (14) there follows the set of differ-
ential equations

o o o o? o o ow
< Blat2+C]a > C7)u]+(—Béw+C6@—C]2)u3+(—3562+C56 > C11)§0 (21)
o o o o o o ow
< 36@4’ C6 axz C12> u; + <Bzﬁ+ CZ@ — Cg)u3 + (34 atz + C46 C]()) . =0 (22)
o o duy o’ o dus
(BSatﬁ “o” C“> EN (%ﬁ Ciom Cw) o
ot o* o? o’
+<—B3W+Ca4 C962+M62) =0 (23)

Note the symmetry of the differential operators in Egs. (21)—(23).
The associated boundary conditions generated by Hamilton’s principle are as follows. The axial forces in
layers 1 and 3 (F; and F3) are

Ouy Ous ow

=rOa %% S 24
Qu, Ous w

Fy=—Cogy Oy ~ G (25)

Note that each of the above two forces includes a contribution from layer 2.
The total shear force, S, in the direction 7V, is given by

GR o’ GR o’ GR o’ ow
S = <—B5 6t2+C56 C11>u1 + <_B46t2+c46 C10>u3+ <—B3at2+C3axz— Cg)ax (26)
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The total bending moment, M, acting on the beam is

Ouy Ou *w
=-C -C -C 27
> ox Yox S ox? (27)
For harmonic oscillation u;, u3 and w may be written in the following form
u = Uleiwt; Uy = l];%eiwt7 W= Weicut (28)

where U}, U; and W are the amplitudes of u;, u, and w, w is the circular (or angular) frequency of the free
vibratory motion and i = /—1.
Eqgs. (21)—(23) now take the following form as a result of the substitution of Egs. (28).

&’ d’ d’ dw
(Cl—dx2+B1w2—C7> (C6dx + Bsw® —C12>U3+ (Csdx2+35w —C11> e =0 (29)
Cd2+B —Cp U+ +B —Cy |Us + Cd—2+B 2 g (30
642 6’ 2 |Ui+ 08 8 |Us 442 4@ 10 )4y = )
&’ du &’ du
(Csdx2+35w —C11> dxl ( +B4w _CIO) dx3
d* d’
+ C3dx4 (330) Cg)@—MC!) W =0 (31)

. . . o d .
Introducing a non-dimensional length ¢ = x/L and writing D = i@ the above equations take the form

(C1D? + ))LU,| + (C¢D* + 46)LU5 + D(CsD* + As)W = 0 (32)

(C¢D* 4 26)LU | + (C2D* + J)LU3 + D(C4D?* + )W = 0 (33)

D(CsD* + As)LU; + D(C4D* + A4)LU; + (C3D* + J3D* — 2q)W =0 (34)
where

2y = (0*B; — Cjy6)L? (35)

for j=1,2,3,...,6 and
7 =Mao*L* (36)

By extensive algebraic manipulation the differential Eqs. (32)—(34) can be combined into a single eighth
order differential equation satisfied by U;, Us and W in the form

(D* + oD® + BD* +9D* +6)X =0 (37)

where X is one of U;, Us or W.
Writing

b.)l»—a

3
Z 1,Cj+21,5Cjy3) (38)
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the coefficients o, f5, 7 and o are given by
3

oty = (bt + 2A5384.) (39)
J=1
3
Bro = —aps + Z(#ﬁé@ + 24419Cj43) (40)
=1
3
, , 1 ,
Py = —(hCa + 72C1 — 246C6) +3 Z Ajl6 + 245430 10) (41)
and
Sty = —attg (42)
with
= CyCy — Ch; py=C3C, —C3 iy =CCy— Ch (43)
Uy = C5C6 — C1C4; Hs = C6C4 — C2C5; He = C4C5 - C3C6 (44)
Hy = dads = Mgy fig = ada =A% g = Jada — Jg (45)
Hio = 15},6 — )VI/AL4; Hyp = ;”614 — }.2/15; Hip = /1425 — ;b3j~6 (46)
The differential Eq. (37) is linear with constant coefficients so that the solution is sought in the form
X = X&'~ (47)

Substituting Eq. (47) into Eq. (37) yields the auxiliary equation

Pt + B+ +5=0 (48)
The above equation is a quartic in p = r* namely

pPrrap’ + B +pp+5=0 (49)

which may be solved in a routine way.

Some pair or pairs of complex roots may occur, but as Uy, Us and W are all real, the associated coef-
ficient, say X}, in the solution for X = Z X ;¢"< will also be complex. As complex roots occur only in con-
jugate pairs, the associated X; will also occur in conjugate pairs.

Thus, the solution for Uy, U} and W can be written as

- Zp,ewé; Us(&) = Z 0 W(E) = ZR,-e’f“f (50)
=1 J=1 J=1

where r; (j = 1,2..,8) are the eight roots of the auxiliary equation and P;, Q;and R;, (j = 1,2...,8) are three
sets of eight, possibly complex, constants.
The rotation of the cross-section @(&) can be expressed as

_law _1 §
_ R .ot

By substituting Eqgs. (50) into Eqs. (32)—(34) it can be shown that the constants P; and Q; are related to R; as
follows so that the responses U, Us, W and @ are all linear combinations of R;.
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Pj = fiR;
and

0, = gR;
where

J; = r(Cort + ) (Csr? + Js) — (Car? + Ja)(Cor? + )}/ 4
and

= r{(C1r + 2)(Car} + 24) = (Csr + 25)(Cor} + 6)} /4

with

A; = L{(Cer? + 26)* — (C172 + 11)(Car? + 1)}

(56)

The expressions for the amplitudes of axial forces in layers 1 and 3 (F; and F3), the shear force across the
cross-section (.S) and the bending moment in the cross-section (M) follow from Eqgs. (24)—(27). Noting that
these forces and moment vary harmonically during the vibratory motion in the same way as the displace-

ments, so that they are (in terms of the non-dimensional variable ¢ = x/L) given by

G (dU;  CedUs  Cs &*W
PO ==7 (dé o w ol dg)

_ C6 dUl dU3 C4 de
F3(é)— L <C2 dé +d—f+C—2Ld—52)

Cy [IsL CsL U, ML CiL dPUs 2 dw & W)
S == (22U, + == + 22U, 4+ == = —
© (C3 1 C; d4¢& C; ’ C; d&* Gy d¢ 4&

G (CsLAU, | Gl dUs  d&*W
o= (G TS T T
With the help of Eqgs. (50), (52) and (53), Egs. (57)—-(60) can be written as

(el
:_CT@:V’(ng CL )Rem>

j=1
8

AsL LL C4L .
Z(éfﬂr i fi + e g+ +C -)Rje“)
. 3

J=1

8
C L CyL -
(er< - %g/+rj>Rje~/4>
J=1 3
9]

where the loads Fi(&), F3(&),

Cs Cs

|
pIES
A/

S(&) and M(¢) are also linear combinations of R;.

(57)
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2.2. Formulation of the dynamic stiffness matrix

The amplitudes of the responses and loads of the freely vibrating sandwich beam are given by Egs. (50),
(51) and (61)—(64), respectively which can now be related by the dynamic stiffness matrix on eliminating the
arbitrary constants R; (j =1,2,3,...,8).

Referring to Fig. 2, the boundary conditions for responses and loads of the sandwich beam are as
follows.

At the left hand end, & =0 (x = 0), the responses are U;(0), U;(0), W(0) and ©(0). The corresponding
responses at the right hand end, & = 1(x = L), are U,(1), Us(1), W(1) and O(1), see Fig. 2. By substituting
¢=0and =1 in Egs. (50) and (51), these boundary conditions give

8 8 1 8
Ui(0) =) P; Us(0)=) 0 W)= Ry 00)=7> R (652)
J=1 Jj=1 Jj=1 Jj=1
8 8 8 1 8
Ui(l) =Y Pie”; Us()=)Y 0"y W(l)=> Re’; O(1) :ZerRje’f (65b)
j=1 j=1 j=1 J=1

Egs. (65a) and (65b) can be written in the following matrix form and by using Egs. (52) and (53) and simply
referring the state vector of response U,(0), U;(0), W(0), ©(0), U(1), U5(1), W(1) and ©(1), to only one set
of arbitrary constants R; as follows.

(U0 [ A ! VE! J4 fs Jo Vi S TR
Us(0) 81 & &3 84 &s & &7 &s R,
w(0) 1 1 1 1 1 1 1 1 R;
0(0) _ ri/L r/L r3/L ry/L rs/L re/L r7/L rg/L Ry (66)
Ui(1) her e fzen fae o fset o feet fre7 fge Rs
Us(1) g:¢" 8,€" 83¢” 84€" 8se” 8e€" 8:€" 8se™ Re
w(1) el e e’ e’ e’ e’ e’ e’ R;
L O(1) | Lre /L re?/L re? /L re /L rses /L ree/L re" /L ree/L] | Rg ]
or
3 = BR (67)

where the displacement and constant vectors 6 and R and the square matrix B follow from Eq. (66).
Similarly at the left hand end, ¢ =0 (x = 0), the loads are F;(0), F3(0), S(0) and M(0), and the corre-

sponding loads at the right hand end, £ =1 (x = L), are Fi(1), F5(1), S(1) and M(1), see Fig. 2. By substi-

tuting £ =0 and 1 in Egs. (61)—(64), and noting that the signs for the forces must be reversed at the right

Ui(0), F:© e U R

W0), S0) W(1), X(1)
6 1 layer 2 2 CT

0(0), M(0L> layer 3 o(1), M(2)
Us(0), F+(0) < > Us(1), Fs(1)
£=0 L e=1

Fig. 2. End conditions for responses and loads for the three-layered sandwich beam.
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hand end as a consequence of the sign convention, these boundary conditions give the following matrix
relationship.

[F1(0) T [an apn aiz a a5 ag a7 aig | [Ri]
F3(0) Ay Gy Gy a5 dxy Ay ax | | R
S(0) a1 ax az;  ay a3 ax azy as | | Rs
M(0) o |am an as aw ass as as asg | | Rs (68)
Fi(1) as| asy asy dasy dass dsg Asy asg | | Rs
F;(1) as1 Gsy Qg3 Qg4 Qg5 des  de7  deg | | Re
S 1) arz  amp dajpy ajg  ajs Qe A Agg Ry
LM(1) ] Lagi agy ags dags dags age ag; asg ] LRg |
or
F = AR (69)
where F is the state vector of loads and the elements of A are as follows.
C C5
al r] <~f/ C L ) (70)
C Cy
az,/:—fz ( fite +CL ) 1)
Cs (4L , L GL o, Js 4
%‘ZF( fi+ f e st st et (72)
Cs CsL C4L
a4j:—L2rj< f} gj—|—rj> (73)
G\ (74)
CIL /
Cs
= g 75
L (c C AL )e (73)
c, )LSL CsL ., 2L GL > 75 5\
wi=-—gl\e it it steenteitn)e (76)
Cs (CsL .  C4L "
as; =37 <C—3f/ to st r./) e” (77)

where j=1,2,3,...,8.
The dynamic stiffness matrix can now be formulated by eliminating the vector of constants R from the
Egs. (67) and (69) to give

F=AB '6 =Ko (78)
where
K=AB' (79)

is the required dynamic stiffness matrix.
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2.3. Further observations and reduction of the theory to the symmetric case

An alternative formulation of the governing equations of motion and boundary conditions introducing
new displacements, say U; and Us, which combine U; and U; provides a further insight into the problem as
follows.

Writing 2U, = U, + Uz and 2Us = U, — Us so that Uy = U4+ Us and Uz = Uy — Us. Eqgs. (32)—(34) can
be recast in terms of Uy and Us. These equations are not explicitly given as new equations of interest, but
are found by adding and subtracting Egs. (32) and (33) respectively, and then substituting for U; and Us in
terms of U and Us. Eq. (34) is reformed by direct substitution of U; and U;. After some manipulation, the
revised set of equations is

{(Cy + Cy +2C6)D* + 1y + 20 + 2C6}LU, + {(Cy — C2)D* 4 Ay — 2y }LU5
+ D{(Cy + Cs)D* + Jg + A5} W =0 (80)

{(Cy = C)D* + )y — g })LU,4 + {(Cy + Cy — 2C6)D* + Ay + 1y — 226 }LUss
+D{(Cs — C4)D* + 45 — A4} W =0 (81)

D{(Cy+ C5)D* + )4 + 25}YLU4 + D{(Cs — C4)D* + 45 — Jy}LUs + (C3D* + J3D* — J7)W =0 (82)
This alternative formulation appears—at first sight—merely to complicate the presentation. However,

when layers 1 and 3 are identical in geometric and material properties, an important simplification occurs.
In this case

my mahy
B 2 =m + 3 B 5 B (83)
and
E>A E,A>h
Ci=C=E4 + 23 2, Cy=—C5=— 2122 1 (84)

Clearly 41 — 2, =0 and 44 + A5 = 0 for this case as it can be seen from Egs. (18)—(20) and (35) that for this
case 11 = A, and A4y = —4s.

Hence the first equation involves U, only, whilst the other two do not involve U,. Thus the system
decouples.

There are a number of research papers which deals with symmetric sandwich beams and some start with
the assumption that U; = —Us, or Uy =0, see Mead and Sivakumaran (1966) and Mead (1982). It is clear
that the general case splits into two separate systems, one purely longitudinal with no flexure, and the other
flexural, with a push-pull action of the inner and outer layers, but with no mean longitudinal motion. The
only circumstance in which an exception to this rule can occur is when both decoupled systems have a com-
mon eigenvalue, in which case the normal modes may include a mixture of the two motions.

For the general system of eighth order, the special case, where layers 1 and 3 are identical, can be
approached by a limiting analysis in which the discrepancy between material and geometric properties is
governed by a parameter that may be allowed to tend to zero. Let, for example, E34; = E14:(1 + &) and
let all other properties of the top and bottom layers be similarly related. Thus as ¢ tends to zero, the
two layers become identical.

Now the eigenvalues of the general eighth order system may be assumed distinct (the exceptional case
is explained later). Then the eigenvectors for small ¢ will weakly couple the eigenvectors of the purely
longitudinal case, and the combined push-pull longitudinal and flexural motion case. For an eigenvalue
later to be identified with an eigenvalue of the push-pull longitudinal with flexure case, the eigenvector
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component of Uy will go to zero with & Thus this physical system cannot support the possibility of
Uy # 0. This shows that the assumption that—in the symmetric case, U; = —Us (or Uy = 0) is not only
justified, but is essential.

If the two systems described above have a common eigenvalue, then an eigenvector of one system is not
suppressed when the other system operates. This is the exceptional case mentioned above, and leads to an
eigenvector with U; and Us arbitrarily related.

One further case should be mentioned, when the material properties are the same for all three layers,
and for any /4, the model does not reduce to a Bernoulli-Euler beam, as the layer 2 is also effective in
shear.

3. Application of the dynamic stiffness matrix

The dynamic stiffness matrix can now be used to compute the natural frequencies and mode shapes of
either a single three-layered sandwich beam or an assembly of such beams, for example, a continuous
sandwich beam on multiple supports. An accurate and reliable method of calculating the natural frequen-
cies and mode shapes is to apply the dynamic stiffness matrix using with the well-known algorithm of
Wittrick and Williams (1971), which has featured in numerous papers (Williams and Wittrick, 1983;
Williams, 1993). The algorithm, unlike its proof, is very simple to use but for a detailed insight interested
readers are referred to the original work of Wittrick and Williams (1971). Essentially the algorithm needs
the dynamic stiffness matrices of individual members such as the three-layered beams considered in this
paper together with other members in a structure and information about their natural frequencies when
both ends are clamped. This information is needed to ensure that no natural frequencies of the structure
are missed. The zeroes of the determinant of the matrix B in Eq. (67) give the clamped—clamped natural
frequencies of the three-layered beam. It should be noted that the actual requirement for the algorithm is
to isolate these clamped-clamped natural frequencies (that is to determine how many such natural fre-
quencies are there below a specified trial frequency) rather than actually calculating them. The
Wittrick—Williams algorithm in essence gives the number of natural frequencies of a structure that exists
below an arbitrarily chosen trial frequency rather than actually determining them. This simple fea-
ture of the algorithm can be used to calculate any natural frequency of the structure to any desirable
accuracy.

4. Scope, limitations and pitfalls of the theory

This paper presents the free vibration theory of a three-layered sandwich beam by developing its dy-
namic stiffness matrix. The governing differential equations of motion have been formed using Hamilton’s
principle. The entire formulation is based on a number of assumptions that may limit the applications of
the theory. The main assumptions are: (1) all three layers of the beam are elastic, (2) the shearing strains in
the top and bottom layers are negligible and therefore, they posses almost infinite shear rigidity whereas the
middle layer or core is shear deformable and thus has a finite shear rigidity, (3) there is no slippage between
any of the layers, (4) the shearing strain is constant across the depth of the middle layer, and (5) transverse
direct strains in all three layers are negligible.

The theory presented is based on the premises that the top and bottom layers of the beam are individual
Bernoulli-Euler beams coupled together by the core. The material and geometric properties of the three
layers may vary markedly, and for some exceptional problems, the exponential terms in the solution with
positive real parts may become very large, presenting numerical difficulties. The problem can be overcome
by re-scaling of the constants calculated from the geometric and material properties of the beam. One of the
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strategies that can be adopted is as follows. Before resorting to any matrix inversion operation the con-
stants associated with positive real parts can be modified by first multiplying and later dividing by a suitably
chosen exponential term, say, e * where A can be typically the length L of the beam.

It should also be noted that for a symmetric three-layered sandwich beam (when the top and bottom
faces are identical) unless the dynamic stiffness matrix is developed using the procedure given in Section
2.3, the general theory for the asymmetric beam will fail. This is because the coefficient matrix of the gov-
erning equations becomes singular. However, if the top and bottom layers are in fact identical, the solution
using the general theory can still be obtained if the properties of the top and bottom layers are changed by a
very small amount. For example, by changing the thickness of one of the two identical layers by a negligibly
small amount may permit a solution. However, care should be exercised because exceptionally small differ-
ence of less than say, of the order of 10~® may cause numerical ill conditioning or give completely wrong
answers.

5. Results and discussions

There are a few research papers (Frostig and Baruch, 1994; Sainsbury and Zhang, 1999; Bhimaraddi,
1995) which provide theory for a three-layered beam of unequal thicknesses, but unfortunately, when pre-
senting numerical results, these papers have resorted to symmetric sandwich beams for which the top and
bottom layers have identical properties. The authors were unable to find specimen results for natural fre-
quencies and mode shapes of a three-layered sandwich beam for which all of the three layers have different
geometric and material properties. However, they have made every possible effort to validate their theory,
particularly by making sure that the limiting case when a uniform solid beam is divided into three fictitious
layers the theory gives correct results. The theory has also been checked when the thickness and other prop-
erties of the top and bottom layers of the beam approach equal values resulting in a symmetric three-
layered beam.

For illustrative purposes numerical results for three examples are provided. The first is a three-layered
sandwich beam of rectangular cross-section and length 0.5m for which the top and bottom layers have
thicknesses 2mm and 3 mm respectively, and they are made of steel whereas the middle layer is of rubber
material with thickness 20mm. Each of the three layers has the same width of 40 mm. The properties used
for steel (with suffix s) and rubber (with suffix r) are E;=210GPa, G, =80GPa, p, = 7850kg/m> and
E.=1.5MPa, G, =0.5MPa, p, = 950kg/m> respectively. The shear correction factor (shape factor) for
the cross-section is taken to be 2/3. The first four natural frequencies and mode shapes of the beam with
cantilever end conditions are illustrated in Fig. 3 which show that the modes are all flexural involving trans-
verse displacements W only. This is to be expected because of the large extensional stiffnesses of the two
faces. Clearly the modes involving axial displacements U; and Uj are unlikely to occur in the lower fre-
quency range for such problems.

In the second example, the rubber core of the above problem is replaced by lead keeping the rest of the
structure unaltered. The properties used for lead (with suffix 1) are E;=16GPa, G;=5.5GPa and
p1 = 11100kg/m>. The first four natural frequencies and mode shapes of the cantilever three-layered beam
are shown in Fig. 4, which reveals some interesting features. The first mode is basically a flexural mode of
the beam involving bending displacement W only. Although the second and third modes are dominated by
flexural displacement W, they are nevertheless, coupled modes which show some amount of coupling with
the axial displacements of the top and bottom layers U; and Us respectively, but acting in opposite direc-
tions. Interestingly, the fourth mode is a pure axial mode with displacements U; and U; in the same direc-
tion with no amount of flexural displacements present.

The third and the final example is that of a symmetric sandwich beam with cantilever end conditions
for which results have been reported by a Mead and Sivakumaran (1966) and Ahmed (1972). The
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Fig. 3. Natural frequencies and mode shapes of the three-layered sandwich beam of example 1 (—) W.

geometrical dimensions and material properties of the beam are as follows. The length L = 0.7112m, core
thickness /i, = 12.7mm, the face thicknesses /; = h; = 0.4572mm, face Young’s modulus E; = FE3; = 69
GPa, face density p; :p3:2680kg/m3, core Young’s modulus E, =0.215GPa, core shear modulus
G, = 82.8 MPa, core density p, = 32.8kg/m>. In order to make the results directly comparable with pub-
lished literature the mass of the core was taken into account, but its axial and bending stiffnesses were
ignored and thus making it deform only in shear. The first four natural frequencies using the present the-
ory are shown in Table 1 along side the results of Mead and Sivakumaran (1966) and Ahmed (1972). The
maximum discrepancy between the results from present theory and the published results is around 2% as
can be seen. Some of these small discrepancies may be attributed to the differences in the rigidity and
mass data used in the analysis. When the axial and bending stiffnesses of the core together with its mass
and shear stiffnesses are all taken into account the four natural frequencies become 36.74 Hz, 216.2 Hz,
555.7Hz and 982.6Hz, respectively. A comparison of these results with the ones quoted in Table 1
indicates that the inclusion of the axial and bending stiffnesses of the core increases the natural frequen-
cies by around 8%. The axial and bending stiffnesses of the core have relatively small effect on the natural
frequencies of this particular sandwich beam and thus the simpler theories used by previous investigators
seem to be justified for such problems.



2196 J.R. Banerjee, A.J. Sobey | International Journal of Solids and Structures 42 (2005) 2181-2197

®,=321.4 rad/s
0
©,=1864 rad/s
Y B e e
®3=4718 rad/s

o~

’//’/’

o " ©,=7193 radfs
// -
0 - 1 1 1 1
0 0.2 04 ¢ 06 0.8 1

Fig. 4. Natural frequencies and mode shapes of the three-layered sandwich beam of example 2 (---) Uy; (——-) Us; (—) W.

Table 1

Natural frequencies of a symmetric sandwich beam with canliver end conditions

Frequency no. Natural frequencies (Hz)
Mead and Sivakumaran (1966) Ahmed (1972) Present theory
(see Table IV, Column 1) (see Table 3, Column 4)

1 34.24 33.97 33.74

2 201.9 200.5 198.8

3 520.9 517.0 S511.4

4 925.4 918.0 905.1




J.R. Banerjee, A.J. Sobey | International Journal of Solids and Structures 42 (2005) 2181-2197 2197
6. Conclusions

Starting with a displacement field that assumes that the axial displacements vary linearly in each element,
and that all the layers have a common flexure, the governing differential equations of motion in free vibra-
tion of an asymmetric three-layered beam are developed and used to obtain the dynamic stiffness matrix,
which relates harmonically varying nodal loads with harmonically varying nodal responses. This has been
supported by extensive use of symbolic computation. The application of the dynamic stiffness matrix is
demonstrated to obtain numerical results for three examples. Some of these results are compared with pub-
lished results that show good agreement. The development of the theory presented here demonstrate great
potential for the use of symbolic computation in advanced structural analysis and is expected to pave the
way for further research on the dynamic stiffness formulation of more complex structural elements.
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