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Abstract

A dynamic stiffness theory of a three-layered sandwich beam is developed and subsequently used to investigate its
free vibration characteristics. This is based on an imposed displacement field so that the top and bottom layers behave
like Rayleigh beams, whilst the central layer behaves like a Timoshenko beam. Using Hamilton�s principle the govern-
ing differential equations of motion of the sandwich beam are derived for the general case when the properties of each
layer are dissimilar. For harmonic oscillation the solutions of these equations are found in exact analytical form, taking
full advantage of the application of symbolic computation, which has also been used to obtain the amplitudes of axial
force, shear force and bending moment in explicit analytical forms. The boundary conditions for responses and loads at
both ends of the freely vibrating sandwich beam are then imposed to formulate the dynamic stiffness matrix, which
relates harmonically varying loads to harmonically varying responses at the ends. Using the Wittrick–Williams algo-
rithm the natural frequencies and mode shapes of some representative problems are obtained and discussed. The impor-
tant degenerate case of a symmetric sandwich beam is also investigated.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Sandwich construction offers the structural designer many attractive features, such as high specific stiff-
ness, good buckling resistance, formability into complex shapes, easy reparability, and so on. Thus the
analysis of such structural systems has been investigated–more or less continuously–for well over half a cen-
tury. There are some excellent papers which contribute to the state-of-the-art, review earlier work and
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provide a long list of references on the subject, see for example, Frostig and Baruch (1994), Silverman
(1995), Sainsbury and Zhang (1999) and Austin and Inman (2000).

By introducing visco-elasticity into the central element, good energy dissipation may be realised, but this
paper does not deal with such non-conservative systems, but examines, in a way that has not been previ-
ously presented, the dynamical behaviour of an asymmetric three-layered element, namely a beam with
three distinct components.

DiTaranto (1965), Mead and Sivakumaran (1966), Mead and Marcus (1969) and Mead (1982) are some
of the earlier investigators who have examined the free vibration problems of sandwich beams using analyt-
ical methods, with due attention to the shearing that occurs between layers. Any Newtonian approach must
take these shearing loads into account, with consequent complications in the analysis. Several other authors
(Sakiyama et al., 1996; Fasana and Marchesiello, 2001; Banerjee, 2003) have also addressed this problem
using an analytical model in which the top and bottom elements behave like beams in Bernoulli–Euler flex-
ure, with the central element deforming only in transverse shear. Further developments that extend this
model by adding a direct stress carrying capability to the central element can be found in He and Rao
(1993), Bhimaraddi (1995) and Sisemore and Darvennes (2002). In many of these earlier works, assumptions
such as the congruence of the top and bottom layers seriously restrict the value of the models.

The problems of modelling shears interacting between the layers can largely be side stepped by using an
energy model, and thus implicitly, but not explicitly, representing the interaction. In particular, the use of
Hamilton�s principle allows a model to be developed in which the best possible elastic representation is
achieved, subject to whatever restrictions are built into the analytical model. For example, a displacement
field may be imposed which allows each element to behave in a relevant manner and as long as the repre-
sentation can be justified, a good model will be realised.

This paper develops a model along these lines for the three-layered beam with no restrictions on the geo-
metric and physical properties of each element. The three elements all have, in general, a mean axial (or
longitudinal) motion as well as a common flexure and the system is fully coupled so that when the beam
flexes, it has longitudinal response and vice versa. This model is of eighth order, and therein lies the diffi-
culty in analytical development.

As is shown below, the completion of the analysis is achieved by using symbolic computation (Fitch,
1985; Rayna, 1986). This makes possible the development of a model in which the only approximations
introduced are in the choice of the displacement field. The end product of the investigation is the develop-
ment, and application, of the dynamic stiffness matrix of the three-layered beam. This retains all informa-
tion derived by solving the governing differential equations subject to the appropriate boundary conditions.
Thus the only source of error is in the choice of the displacement field.

The system of displacements used is as follows. All three layers have a common flexure. The top and
bottom layers of the beam are assumed to bend in such a way that the cross-section rotates so as to be
normal to the mid-plane flexure, as in the case of a Bernoulli–Euler beam, but with a longitudinal dis-
placement and rotatory inertia taken into account. Thus the axial displacement varies linearly through
the thickness. The central element also has a linear variation in axial displacement, but the cross-section
does not rotate so as to be normal to the common flexure, and necessarily shears. This is modelled as a
Timoshenko beam.

Such a procedure cannot generate a complete solution to the boundary value problem of the beam in
vibration because it does not allow for variation in the transverse shear (and any associated non-planar
bending). However, the likelihood is that the boundary zone between layers in which the shear changes rap-
idly is quite thin and so the inherent inaccuracy in the displacement field introduces only a small error into
the energy expressions formulated, and so does not degrade significantly the whole model.

The resulting set of differential equations, which governs the free vibration of the three-layered beam, is
of eighth order, which only degenerates into a simpler system of a sixth order flexure and second order lon-
gitudinal motion in the exceptional case when the top and bottom layers are identical. This is proved below.
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A resume of the analysis developed is as follows. Using the assumed displacement field, the axial direct
stresses, and any non-zero shear stresses, are evaluated, so that the expressions for the system kinetic and
strain energies are obtained. The resulting Lagrangian is used in applying Hamilton�s principle to obtain
the partial differential equations and boundary conditions of the beam. By assuming harmonic motion,
these partial differential equations are converted into total differential equations. These are further com-
bined into a single eighth order total differential equation with constant coefficients. This is solved to gen-
erate the analytical solution to the problem. A state vector of loads (forces and moments) and a state
vector of responses (displacements and rotations) are then expressed in terms of eight arbitrary constants
of integration. On eliminating these constants the state vector of loads is expressed in terms of the state
vector of response and this is the required dynamic stiffness matrix. From the outset the use of the sym-
bolic computation package REDUCE (Fitch, 1985; Rayna, 1986) has enabled the Lagrangian to be for-
mulated, the variational analysis to be undertaken, the governing differential equation and its solution,
together with eighth order matrix manipulation, to be carried out. It is therefore, reasonable to ascertain
that without resorting to a symbolic computation package such as REDUCE, the completion of the task
of determining the dynamic stiffness matrix might well have been impossible.

The model developed assumes an isotropic material, and cannot readily be extended to represent fibre-
reinforced laminated composite beams, as there would, in general, be a torsional response as well as the
assumed motion for such materials. For orthotropic materials where no such restriction applies, the given
analysis can readily be extended.

The theory has been programmed and applied to a number of cases, and the results are discussed and
compared with published ones wherever possible. As the proposed method is exact (within the assumed dis-
placement field), it can be used to provide a benchmark against which finite element and other studies may
be validated. It is of particular value in comparing higher harmonic response, where finite element methods
become less and less reliable as the mode number increases, whereas there is no corresponding loss of accu-
racy in the dynamic stiffness approach.
2. Theory

2.1. Derivation of the governing differential equations and solutions

In a rectangular Cartesian coordinate system Fig. 1 represents a three-layered sandwich beam with dis-
tinct element-1, 2 and 3 as shown. Each layer has its own geometric and material properties with a subscript
denoting the layer number. Thus the top layer has thickness h1, width b1 and has a Young�s modulus E1,
y top face

h1 (1) u1

h2 (2) core u2

x

z h3 (3) u3

bottom face

Ow/

u1 w/ h1 /2

u1+w/ h1 /2

u3 w/ h3 /2

u3+w/ h3 /2





Fig. 1. The coordinate system and notation for a three-layered sandwich beam.
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density q1 cross-sectional area A1 (=b1h1), and second moment of area I1. Layers 1 and 3 do not shear, so
their shear moduli are irrelevant, but layer 2 has shear modulus G2.

Following the description of the chosen displacement field given in the introduction it is readily ob-
served that the axial displacements vary linearly from u1 � h1

2
w0 on the top to u1 þ h1

2
w0 at the interface

between layers 1 and 2, and from u3 � h3
2
w0 at the interface between layers 2 and 3 to u3 þ h3

2
w0 at the

bottom of layer 3. Here, and later, primes denote partial differentiation with respect to x. The middle
layer has a consequential shear as its imposed motion is determined by the continuity of layers, and
an assumed linear variation across its thickness. (The mid-layer displacement u2 in layer 2 is not further
used.)

It follows that the axial strain varies
from u01 �
h1
2
w00 to u01 þ

h1
2
w00 in layer 1

from u01 þ
h1
2
w00 to u03 �

h3
2
w00 in layer 2; and

from u03 �
h3
2
w00 to u03 þ

h3
2
w00 in layer 3
In addition layer 2 will have shearing strain
c ¼ w0 þ 1

h2
fu1 � u3 þ ðh1 þ h3Þw0=2g ¼ 1

h2
ðu1 � u3 þ aw0Þ ð1Þ
where
a ¼ ðh1 þ 2h2 þ h3Þ=2 ð2Þ
Thus the entire strain system is known. For a linear isotropic material, the stresses and strain energy can
now be formulated. In developing the strain and kinetic energies, repeated use is made of the following well
known result.

If f(x) is a linear function of x varying from f1 = f(x1) at x = x1 to f2 = f(x2) at x = x2 then
Z x2

x1

ff ðxÞg2 dx ¼ ðx2 � x1Þðf 2
1 þ f1f2 þ f 2

2 Þ=3 ð3Þ
There are four sources of strain energy, three due to the axial strains in each layer and the fourth due to the
shearing strain in layer 2. These have the following expressions
V 1 ¼
1

2
E1A1

Z L

0

ðu01Þ
2 dxþ 1

2
E1I1

Z L

0

ðw00Þ2 dx ð4Þ

V 2N ¼ 1

6
E2A2

Z L

0

ðu01Þ
2 þ ðu01u03Þ þ ðu03Þ

2 þ h1 �
h3
2

� �
u01w

00 þ h1
2
� h3

� �
u03w

00
�

þ 1

4
ðh21 � h1h3 þ h23Þðw00Þ2

�
dx ð5Þ

V 3 ¼
1

2
E3A3

Z L

0

ðu03Þ
2 dxþ 1

2
E3I3

Z L

0

ðw00Þ2 dx ð6Þ

V 2S ¼
1

2
k2A2G2

Z L

0

ðu1 � u3 þ aw0Þ2

h22
dx ð7Þ
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where V1 and V3 are the strain energies of layers 1 and 3 due to normal strain and V2N and V2S are the
strain energies of layer 2 due to normal and shearing strains respectively, and k2 is the shear coefficient
or shape factor (<1) which is introduced because the effective shear in layer 2 will not be equal to c every-
where. Note that the bending properties of the core are properly represented although the term E2I2 does
not appear explicitly in Eq. (5).

Thus the total strain energy V = V1 + V2N + V2S + V3 is
V ¼ 1

2

Z L

0

"
E1A1ðu01Þ

2 þ E1I1ðw00Þ2 þ E2A2

3
ðu01Þ

2 þ u01u
0
3 þ ðu03Þ

2 þ h1 �
h3
2

� �
u01w

00 h1
2
� h3

� �
u03w

00
�

þ 1

4
ðh21 � h1h3 þ h23Þðw00Þ2

�
þ E3A3ðu03Þ

2 þ E3I3ðw00Þ2 þ k2A2G2

h22
ðu1 � u3 þ aw0Þ2

#
dx ð8Þ
In a similar way, the kinetic energy T is the sum of four quantities representing the axial motion of each
layer plus that due to transverse motion of the entire beam. Using an over dot to represent partial differ-
entiation with respect to time, these are
T 1 ¼
1

2

Z L

0

fm1ð _u1Þ2 þ q1I1ð _w0Þ2gdx ð9Þ
from layer 1,
T 2 ¼
m2

6

Z L

0

ð _u1Þ2 þ ð _u3Þ2 þ _u1 _u3 þ h1 �
h3
2

� �
_w0 _u1 þ

h1
2
� h3

� �
_w0 _u3 þ

1

4
h21 � h1h3 þ h23
� �

_w0ð Þ2
� �

dx

ð10Þ

from layer 2
T 3 ¼
1

2

Z L

0

fm3ð _u3Þ2 þ q3I3ð _w0Þ2gdx ð11Þ
for layer 3, and
T 4 ¼
1

2
M
Z L

0

ð _wÞ2 dx ð12Þ
from the complete beam in transverse motion.
In Eqs. (9)–(12) m1 = q1A1, m2 = q2A2, m3 = q3A3 and M = m1 + m2 + m3 represent the mass per unit

length for layers 1–3 and the complete beam respectively. Note that the rotatory inertia of the core has been
accounted for although the term q2I2 does not appear explicitly in Eq. (10).

Thus T = T1 + T2 + T3 + T4 takes the following form
T ¼ 1

2

Z L

0

m1 _u
2
1 þ q1I1ð _w0Þ2 þ m2

3
ð _u1Þ2 þ _u1 _u3 þ ð _u3Þ2 þ h1 �

h3
2

� �
_u1 _w

0 þ h1
2
� h3

� �
_u3 _w

0
��

þ 1

4
ðh21 � h1h3 þ h23Þð _w0Þ2

�
þ m3ð _u3Þ2 þ q3I3ð _w0Þ2 þM _w2

�
dx ð13Þ
Combining T and V from Eqs. (13) and (8) the Lagrangian L ¼ T � V takes the following form
L ¼ 1

2

Z L

0

n
B1 _u

2
1 þ 2B6 _u1 _u3 þ B2 _u

2
3 þ 2B5 _u1 _w

0 þ 2B4 _u3 _w
0:þ B3ð _w0Þ2 þM _w2 � C1ðu01Þ

2 � 2C6u01u
0
3

� C2ðu03Þ
2 � 2C5u01w

00 � 2C4u03w
00 � C3ðw00Þ2�C7u21

� 2C12u1u3 � C8u23 � 2C11u1w0 � 2C10u3w0 � C9ðw0Þ2
o
dx ð14Þ
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where
B1 ¼ m1 þ
m2

3
; B2 ¼ m3 þ

m2

3
; B3 ¼ q1I1 þ

m2

12
ðh21 � h1h3 þ h23Þ þ q3I3 ð15Þ

B4 ¼
m2

6

h1
2
� h3

� �
; B5 ¼

m2

6
h1 �

h3
2

� �
; B6 ¼

m2

6
ð16Þ

C1 ¼ E1A1 þ
E2A2

3
; C2 ¼

E2A2

3
þ E3A3; C3 ¼ E1I1 þ

E2A2

12
ðh21 � h1h3 þ h23Þ þ E3I3 ð17Þ

C4 ¼
E2A2

6

h1
2
� h3

� �
; C5 ¼

E2A2

6
h1 �

h3
2

� �
; C6 ¼

E2A2

6
ð18Þ

C7 ¼
k2A2G2

h22
; C8 ¼ C7; C9 ¼ a2C7 ð19Þ

C10 ¼ �aC7; C11 ¼ �C10; C12 ¼ �C7 ð20Þ

with a given in Eq. (2).

Applying Hamilton�s principle d
R t2
t1
Ldt ¼ 0 and using L from Eq. (14) there follows the set of differ-

ential equations
�B1

o
2

ot2
þ C1

o
2

ox2
� C7

� �
u1 þ �B6

o
2

ot2
þ C6

o
2

ox2
� C12

� �
u3 þ �B5

o
2

ot2
þ C5

o
2

ox2
� C11

� �
ow
ox

¼ 0 ð21Þ

�B6

o
2

ot2
þ C6

o
2

ox2
� C12

� �
u1 þ �B2

o
2

ot2
þ C2

o
2

ox2
� C8

� �
u3 þ �B4

o
2

ot2
þ C4

o
2

ox2
� C10

� �
ow
ox

¼ 0 ð22Þ

�B5

o2

ot2
þ C5

o2

ox2
� C11

� �
ou1
ox

þ �B4

o2

ot2
þ C4

o2

ox2
� C10

� �
ou3
ox

þ �B3

o4

ox2ot2
þ C3

o4

ox4
� C9

o2

ox2
þM

o2

ot2

� �
w ¼ 0 ð23Þ
Note the symmetry of the differential operators in Eqs. (21)–(23).
The associated boundary conditions generated by Hamilton�s principle are as follows. The axial forces in

layers 1 and 3 (F1 and F3) are
F 1 ¼ �C1

ou1
ox

� C6

ou3
ox

� C5

o2w
ox2

ð24Þ

F 3 ¼ �C6

ou1
ox

� C2

ou3
ox

� C4

o
2w
ox2

ð25Þ
Note that each of the above two forces includes a contribution from layer 2.
The total shear force, S, in the direction Y, is given by
S ¼ �B5

o2

ot2
þ C5

o2

ox2
� C11

� �
u1 þ �B4

o2

ot2
þ C4

o2

ox2
� C10

� �
u3 þ �B3

o2

ot2
þ C3

o2

ox2
� C9

� �
ow
ox

ð26Þ
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The total bending moment, M, acting on the beam is
M ¼ �C5

ou1
ox

� C4

ou3
ox

� C3

o2w
ox2

ð27Þ
For harmonic oscillation u1, u3 and w may be written in the following form
u1 ¼ U 1e
ixt; u3 ¼ U 3e

ixt; w ¼ W eixt ð28Þ
where U1, U3 and W are the amplitudes of u1, u2 and w, x is the circular (or angular) frequency of the free
vibratory motion and i =

p�1.
Eqs. (21)–(23) now take the following form as a result of the substitution of Eqs. (28).
C1

d2

dx2
þ B1x

2 � C7

� �
U 1 þ C6

d2

dx2
þ B6x

2 � C12

� �
U 3 þ C5

d2

dx2
þ B5x

2 � C11

� �
dW
dx

¼ 0 ð29Þ

C6

d2

dx2
þ B6x

2 � C12

� �
U 1 þ C2

d2

dx2
þ B2x

2 � C8

� �
U 3 þ C4

d2

dx2
þ B4x

2 � C10

� �
dW
dx

¼ 0 ð30Þ

C5

d2

dx2
þ B5x

2 � C11

� �
dU 1

dx
þ C4

d2

dx2
þ B4x

2 � C10

� �
dU 3

dx

þ C3

d4

dx4
þ ðB3x

2 � C9Þ
d2

dx2
�Mx2

� �
W ¼ 0 ð31Þ
Introducing a non-dimensional length n = x/L and writing D ¼ d

dn
, the above equations take the form
ðC1D2 þ k1ÞLU 1 þ ðC6D2 þ k6ÞLU 3 þ DðC5D2 þ k5ÞW ¼ 0 ð32Þ

ðC6D2 þ k6ÞLU 1 þ ðC2D2 þ k2ÞLU 3 þ DðC4D2 þ k4ÞW ¼ 0 ð33Þ

DðC5D2 þ k5ÞLU 1 þ DðC4D2 þ k4ÞLU 3 þ ðC3D4 þ k3D2 � k7ÞW ¼ 0 ð34Þ
where
kj ¼ ðx2Bj � Cjþ6ÞL2 ð35Þ
for j = 1,2,3, . . ., 6 and
k7 ¼ Mx2L4 ð36Þ

By extensive algebraic manipulation the differential Eqs. (32)–(34) can be combined into a single eighth

order differential equation satisfied by U1, U3 and W in the form
ðD8 þ aD6 þ bD4 þ cD2 þ dÞX ¼ 0 ð37Þ

where X is one of U1, U3 or W.

Writing
l0 ¼
1

3

X3
j¼1

ðljCj þ 2ljþ3Cjþ3Þ ð38Þ



2188 J.R. Banerjee, A.J. Sobey / International Journal of Solids and Structures 42 (2005) 2181–2197
the coefficients a, b, c and d are given by
al0 ¼
X3
j¼1

ðkjlj þ 2kjþ3ljþ3Þ ð39Þ

bl0 ¼ �k7l3 þ
X3
j¼1

ðljþ6Cj þ 2ljþ9Cjþ3Þ ð40Þ

cl0 ¼ �ðk1C2 þ k2C1 � 2k6C6Þk7 þ
1

3

X3
j¼1

ðkjljþ6 þ 2kjþ3ljþ9Þ ð41Þ
and
dl0 ¼ �k7l9 ð42Þ

with
l1 ¼ C2C3 � C2
4; l2 ¼ C3C1 � C2

5; l3 ¼ C1C2 � C2
6 ð43Þ

l4 ¼ C5C6 � C1C4; l5 ¼ C6C4 � C2C5; l6 ¼ C4C5 � C3C6 ð44Þ

l7 ¼ k2k3 � k24; l8 ¼ k3k1 � k25; l9 ¼ k1k2 � k26 ð45Þ

l10 ¼ k5k6 � k1k4; l11 ¼ k6k4 � k2k5; l12 ¼ k4k5 � k3k6 ð46Þ

The differential Eq. (37) is linear with constant coefficients so that the solution is sought in the form
X ¼ X 0e
rn ð47Þ
Substituting Eq. (47) into Eq. (37) yields the auxiliary equation
r8 þ ar6 þ br4 þ cr2 þ d ¼ 0 ð48Þ

The above equation is a quartic in p = r2 namely
p4 þ ap3 þ bp2 þ cp þ d ¼ 0 ð49Þ

which may be solved in a routine way.

Some pair or pairs of complex roots may occur, but as U1, U3 and W are all real, the associated coef-
ficient, say Xj, in the solution for X ¼

P8
j¼1X je

rjn will also be complex. As complex roots occur only in con-
jugate pairs, the associated Xj will also occur in conjugate pairs.

Thus, the solution for U1, U3 and W can be written as
U 1ðnÞ ¼
X8
j¼1

P je
rjn; U 3ðnÞ ¼

X8
j¼1

Qje
rjn; W ðnÞ ¼

X8
j¼1

Rje
rjn ð50Þ
where rj (j = 1,2 . . ., 8) are the eight roots of the auxiliary equation and Pj, Qj and Rj, (j = 1,2 . . ., 8) are three
sets of eight, possibly complex, constants.

The rotation of the cross-section H(n) can be expressed as
HðnÞ ¼ 1

L
dW
dn

¼ 1

L

X8
j¼1

rjRje
rjn ð51Þ
By substituting Eqs. (50) into Eqs. (32)–(34) it can be shown that the constants Pj and Qj are related to Rj as
follows so that the responses U1, U3, W and H are all linear combinations of Rj.
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P j ¼ fjRj ð52Þ
and
Qj ¼ gjRj ð53Þ
where
fj ¼ rjfðC2r2j þ k2ÞðC5r2j þ k5Þ � ðC4r2j þ k4ÞðC6r2j þ k6Þg=Dj ð54Þ
and
gj ¼ rjfðC1r2j þ k1ÞðC4r2j þ k4Þ � ðC5r2j þ k5ÞðC6r2j þ k6Þg=Dj ð55Þ
with
Dj ¼ LfðC6r2j þ k6Þ2 � ðC1r2j þ k1ÞðC2r2j þ k2Þg ð56Þ
The expressions for the amplitudes of axial forces in layers 1 and 3 (F1 and F3), the shear force across the
cross-section (S) and the bending moment in the cross-section (M) follow from Eqs. (24)–(27). Noting that
these forces and moment vary harmonically during the vibratory motion in the same way as the displace-
ments, so that they are (in terms of the non-dimensional variable n = x/L) given by
F 1ðnÞ ¼ �C1

L
dU 1

dn
þ C6

C1

dU 3

dn
þ C5

C1L
d2W

dn2

� �
ð57Þ

F 3ðnÞ ¼ �C2

L
C6

C2

dU 1

dn
þ dU 3

dn
þ C4

C2L
d2W

dn2

� �
ð58Þ

SðnÞ ¼ C3

L3

k5L
C3

U 1 þ
C5L
C3

d2U 1

dn2
þ k4L

C3

U 3 þ
C4L
C3

d2U 3

dn2
þ k3
C3

dW
dn

þ d3W

dn3

� �
ð59Þ

MðnÞ ¼ �C3

L2

C5L
C3

dU 1

dn
þ C4L

C3

dU 3

dn
þ d2W

dn2

� �
ð60Þ
With the help of Eqs. (50), (52) and (53), Eqs. (57)–(60) can be written as
F 1ðnÞ ¼ �C1

L

X8
j¼1

rj fj þ
C6

C1

gj þ
C5

C1L
rj

� �
Rje

rjn

 !
ð61Þ

F 3ðnÞ ¼ �C2

L

X8
j¼1

rj
C6

C2

fj þ gj þ
C4

C2L
rj

� �
Rje

rjn

 !
ð62Þ

SðnÞ ¼ C3

L3

X8
j¼1

k5L
C3

fj þ
C5L
C3

r2j fj þ
k4L
C3

gj þ
C4L
C3

r2j gj þ r3j þ
k3
C3

rj

� �
Rje

rjn

 !
ð63Þ

MðnÞ ¼ �C3

L2

X8
j¼1

rj
C5L
C3

fj þ
C4L
C3

gj þ rj

� �
Rje

rjn

 !
ð64Þ
where the loads F1(n), F3(n), S(n) and M(n) are also linear combinations of Rj.
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2.2. Formulation of the dynamic stiffness matrix

The amplitudes of the responses and loads of the freely vibrating sandwich beam are given by Eqs. (50),
(51) and (61)–(64), respectively which can now be related by the dynamic stiffness matrix on eliminating the
arbitrary constants Rj (j = 1,2,3, . . ., 8).

Referring to Fig. 2, the boundary conditions for responses and loads of the sandwich beam are as
follows.

At the left hand end, n = 0 (x = 0), the responses are U1(0), U3(0), W(0) and H(0). The corresponding
responses at the right hand end, n = 1(x = L), are U1(1), U3(1), W(1) and H(1), see Fig. 2. By substituting
n = 0 and n = 1 in Eqs. (50) and (51), these boundary conditions give
U 1ð0Þ ¼
X8
j¼1

P j; U 3ð0Þ ¼
X8
j¼1

Qj; W ð0Þ ¼
X8
j¼1

Rj; Hð0Þ ¼ 1

L

X8
j¼1

rjRj ð65aÞ

U 1ð1Þ ¼
X8
j¼1

P je
rj ; U 3ð1Þ ¼

X8
j¼1

Qje
rj ; W ð1Þ ¼

X8
j¼1

Rje
rj ; Hð1Þ ¼ 1

L

X8
j¼1

rjRje
rj ð65bÞ
Eqs. (65a) and (65b) can be written in the following matrix form and by using Eqs. (52) and (53) and simply
referring the state vector of response U1(0), U3(0), W(0), H(0), U1(1), U3(1), W(1) and H(1), to only one set
of arbitrary constants Rj as follows.
U 1ð0Þ
U 3ð0Þ
W ð0Þ
Hð0Þ
U 1ð1Þ
U 3ð1Þ
W ð1Þ
Hð1Þ

2
66666666666664

3
77777777777775
¼

f1 f2 f3 f4 f5 f6 f7 f8
g1 g2 g3 g4 g5 g6 g7 g8
1 1 1 1 1 1 1 1

r1=L r2=L r3=L r4=L r5=L r6=L r7=L r8=L

f1er1 f2er2 f3er3 f4er4 f5er5 f6er6 f7er7 f8er8

g1e
r1 g2e

r2 g3e
r3 g4e

r4 g5e
r5 g6e

r6 g7e
r7 g8e

r8

er1 er2 er3 er4 er5 er6 er7 er8

r1er1=L r2er2=L r3er3=L r4er4=L r5er5=L r6er6=L r7er7=L r8er8=L

2
66666666666664

3
77777777777775

R1

R2

R3

R4

R5

R6

R7

R8

2
66666666666664

3
77777777777775

ð66Þ
or
d ¼ BR ð67Þ

where the displacement and constant vectors d and R and the square matrix B follow from Eq. (66).

Similarly at the left hand end, n = 0 (x = 0), the loads are F1(0), F3(0), S(0) and M(0), and the corre-
sponding loads at the right hand end, n = 1 (x = L), are F1(1), F3(1), S(1) and M(1), see Fig. 2. By substi-
tuting n = 0 and 1 in Eqs. (61)–(64), and noting that the signs for the forces must be reversed at the right
U1(0), F1(0)   U1(1), F1(1) 

W(0), S(0)   W(1), S(1) 
1 2

(0), M(0)   (1), M(1) 

U3(0), F3(0)   U3(1), F3(1) 

=0 L =1

layer 1

layer 2

layer 3

ξξ

Θ Θ

Fig. 2. End conditions for responses and loads for the three-layered sandwich beam.
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hand end as a consequence of the sign convention, these boundary conditions give the following matrix
relationship.
F 1ð0Þ
F 3ð0Þ
Sð0Þ
Mð0Þ
F 1ð1Þ
F 3ð1Þ
Sð1Þ
Mð1Þ

2
66666666666664

3
77777777777775
¼

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48
a51 a52 a53 a54 a55 a56 a57 a58
a61 a62 a63 a64 a65 a66 a67 a68
a71 a72 a73 a74 a75 a76 a77 a78
a81 a82 a83 a84 a85 a86 a87 a88

2
66666666666664

3
77777777777775

R1

R2

R3

R4

R5

R6

R7

R8

2
66666666666664

3
77777777777775

ð68Þ
or
F ¼ AR ð69Þ

where F is the state vector of loads and the elements of A are as follows.
a1j ¼ �C1

L
rj fj þ

C6

C1

gj þ
C5

C1L
rj

� �
ð70Þ

a2j ¼ �C2

L
rj

C6

C2

fj þ gj þ
C4

C2L
rj

� �
ð71Þ

a3j ¼
C3

L3

k5L
C3

fj þ
C5L
C3

fjr2j þ
k4L
C3

gj þ
C4L
C3

gjr
2
j þ

k3
C3

rj þ r3j

� �
ð72Þ

a4j ¼ �C3

L2
rj

C5L
C3

fj þ
C4L
C3

gj þ rj

� �
ð73Þ

a5j ¼
C1

L
rj fj þ

C6

C1

gj þ
C5

C1L
rj

� �
erj ð74Þ

a6j ¼
C2

L
rj

C6

C2

fj þ gj þ
C4

C2L
rj

� �
erj ð75Þ

a7j ¼ �C3

L3

k5L
C3

fj þ
C5L
C3

fjr2j þ
k4L
C3

gj þ
C4L
C3

gjr
2
j þ

k3
C3

rj þ r3j

� �
erj ð76Þ

a8j ¼
C3

L2
rj

C5L
C3

fj þ
C4L
C3

gj þ rj

� �
erj ð77Þ
where j = 1,2,3, . . ., 8.
The dynamic stiffness matrix can now be formulated by eliminating the vector of constants R from the

Eqs. (67) and (69) to give
F ¼ AB�1d ¼ Kd ð78Þ

where
K ¼ AB�1 ð79Þ

is the required dynamic stiffness matrix.
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2.3. Further observations and reduction of the theory to the symmetric case

An alternative formulation of the governing equations of motion and boundary conditions introducing
new displacements, say U4 and U5, which combine U1 and U3 provides a further insight into the problem as
follows.

Writing 2U4 = U1 + U3 and 2U5 = U1 � U3 so that U1 = U4 + U5 and U3 = U4 � U5. Eqs. (32)–(34) can
be recast in terms of U4 and U5. These equations are not explicitly given as new equations of interest, but
are found by adding and subtracting Eqs. (32) and (33) respectively, and then substituting for U1 and U3 in
terms of U4 and U5. Eq. (34) is reformed by direct substitution of U1 and U3. After some manipulation, the
revised set of equations is
fðC1 þ C2 þ 2C6ÞD2 þ k1 þ k2 þ 2C6gLU 4 þ fðC1 � C2ÞD2 þ k1 � k2gLU 5

þ DfðC4 þ C5ÞD2 þ k4 þ k5gW ¼ 0 ð80Þ

fðC1 � C2ÞD2 þ k1 � k2gLU 4 þ fðC1 þ C2 � 2C6ÞD2 þ k1 þ k2 � 2k6gLU 5

þ DfðC5 � C4ÞD2 þ k5 � k4gW ¼ 0 ð81Þ

DfðC4 þ C5ÞD2 þ k4 þ k5gLU 4 þ DfðC5 � C4ÞD2 þ k5 � k4gLU 5 þ ðC3D4 þ k3D2 � k7ÞW ¼ 0 ð82Þ
This alternative formulation appears—at first sight—merely to complicate the presentation. However,
when layers 1 and 3 are identical in geometric and material properties, an important simplification occurs.

In this case
B1 ¼ B2 ¼ m1 þ
m2

3
; B4 ¼ �B5 ¼ �m2h1

12
ð83Þ
and
C1 ¼ C2 ¼ E1A1 þ
E2A2

3
; C4 ¼ �C5 ¼ �E2A2h1

12
ð84Þ
Clearly k1 � k2 = 0 and k4 + k5 = 0 for this case as it can be seen from Eqs. (18)–(20) and (35) that for this
case k1 = k2 and k4 = �k5.

Hence the first equation involves U4 only, whilst the other two do not involve U4. Thus the system
decouples.

There are a number of research papers which deals with symmetric sandwich beams and some start with
the assumption that U1 = �U3, or U4 = 0, see Mead and Sivakumaran (1966) and Mead (1982). It is clear
that the general case splits into two separate systems, one purely longitudinal with no flexure, and the other
flexural, with a push-pull action of the inner and outer layers, but with no mean longitudinal motion. The
only circumstance in which an exception to this rule can occur is when both decoupled systems have a com-
mon eigenvalue, in which case the normal modes may include a mixture of the two motions.

For the general system of eighth order, the special case, where layers 1 and 3 are identical, can be
approached by a limiting analysis in which the discrepancy between material and geometric properties is
governed by a parameter that may be allowed to tend to zero. Let, for example, E3A3 = E1A1(1 + e) and
let all other properties of the top and bottom layers be similarly related. Thus as e tends to zero, the
two layers become identical.

Now the eigenvalues of the general eighth order system may be assumed distinct (the exceptional case
is explained later). Then the eigenvectors for small e will weakly couple the eigenvectors of the purely
longitudinal case, and the combined push-pull longitudinal and flexural motion case. For an eigenvalue
later to be identified with an eigenvalue of the push-pull longitudinal with flexure case, the eigenvector
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component of U4 will go to zero with e. Thus this physical system cannot support the possibility of
U4 5 0. This shows that the assumption that—in the symmetric case, U1 = �U3 (or U4 = 0) is not only
justified, but is essential.

If the two systems described above have a common eigenvalue, then an eigenvector of one system is not
suppressed when the other system operates. This is the exceptional case mentioned above, and leads to an
eigenvector with U1 and U3 arbitrarily related.

One further case should be mentioned, when the material properties are the same for all three layers,
and for any hi, the model does not reduce to a Bernoulli–Euler beam, as the layer 2 is also effective in
shear.
3. Application of the dynamic stiffness matrix

The dynamic stiffness matrix can now be used to compute the natural frequencies and mode shapes of
either a single three-layered sandwich beam or an assembly of such beams, for example, a continuous
sandwich beam on multiple supports. An accurate and reliable method of calculating the natural frequen-
cies and mode shapes is to apply the dynamic stiffness matrix using with the well-known algorithm of
Wittrick and Williams (1971), which has featured in numerous papers (Williams and Wittrick, 1983;
Williams, 1993). The algorithm, unlike its proof, is very simple to use but for a detailed insight interested
readers are referred to the original work of Wittrick and Williams (1971). Essentially the algorithm needs
the dynamic stiffness matrices of individual members such as the three-layered beams considered in this
paper together with other members in a structure and information about their natural frequencies when
both ends are clamped. This information is needed to ensure that no natural frequencies of the structure
are missed. The zeroes of the determinant of the matrix B in Eq. (67) give the clamped–clamped natural
frequencies of the three-layered beam. It should be noted that the actual requirement for the algorithm is
to isolate these clamped–clamped natural frequencies (that is to determine how many such natural fre-
quencies are there below a specified trial frequency) rather than actually calculating them. The
Wittrick–Williams algorithm in essence gives the number of natural frequencies of a structure that exists
below an arbitrarily chosen trial frequency rather than actually determining them. This simple fea-
ture of the algorithm can be used to calculate any natural frequency of the structure to any desirable
accuracy.
4. Scope, limitations and pitfalls of the theory

This paper presents the free vibration theory of a three-layered sandwich beam by developing its dy-
namic stiffness matrix. The governing differential equations of motion have been formed using Hamilton�s
principle. The entire formulation is based on a number of assumptions that may limit the applications of
the theory. The main assumptions are: (1) all three layers of the beam are elastic, (2) the shearing strains in
the top and bottom layers are negligible and therefore, they posses almost infinite shear rigidity whereas the
middle layer or core is shear deformable and thus has a finite shear rigidity, (3) there is no slippage between
any of the layers, (4) the shearing strain is constant across the depth of the middle layer, and (5) transverse
direct strains in all three layers are negligible.

The theory presented is based on the premises that the top and bottom layers of the beam are individual
Bernoulli–Euler beams coupled together by the core. The material and geometric properties of the three
layers may vary markedly, and for some exceptional problems, the exponential terms in the solution with
positive real parts may become very large, presenting numerical difficulties. The problem can be overcome
by re-scaling of the constants calculated from the geometric and material properties of the beam. One of the
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strategies that can be adopted is as follows. Before resorting to any matrix inversion operation the con-
stants associated with positive real parts can be modified by first multiplying and later dividing by a suitably
chosen exponential term, say, e�k where k can be typically the length L of the beam.

It should also be noted that for a symmetric three-layered sandwich beam (when the top and bottom
faces are identical) unless the dynamic stiffness matrix is developed using the procedure given in Section
2.3, the general theory for the asymmetric beam will fail. This is because the coefficient matrix of the gov-
erning equations becomes singular. However, if the top and bottom layers are in fact identical, the solution
using the general theory can still be obtained if the properties of the top and bottom layers are changed by a
very small amount. For example, by changing the thickness of one of the two identical layers by a negligibly
small amount may permit a solution. However, care should be exercised because exceptionally small differ-
ence of less than say, of the order of 10�8 may cause numerical ill conditioning or give completely wrong
answers.
5. Results and discussions

There are a few research papers (Frostig and Baruch, 1994; Sainsbury and Zhang, 1999; Bhimaraddi,
1995) which provide theory for a three-layered beam of unequal thicknesses, but unfortunately, when pre-
senting numerical results, these papers have resorted to symmetric sandwich beams for which the top and
bottom layers have identical properties. The authors were unable to find specimen results for natural fre-
quencies and mode shapes of a three-layered sandwich beam for which all of the three layers have different
geometric and material properties. However, they have made every possible effort to validate their theory,
particularly by making sure that the limiting case when a uniform solid beam is divided into three fictitious
layers the theory gives correct results. The theory has also been checked when the thickness and other prop-
erties of the top and bottom layers of the beam approach equal values resulting in a symmetric three-
layered beam.

For illustrative purposes numerical results for three examples are provided. The first is a three-layered
sandwich beam of rectangular cross-section and length 0.5m for which the top and bottom layers have
thicknesses 2mm and 3mm respectively, and they are made of steel whereas the middle layer is of rubber
material with thickness 20mm. Each of the three layers has the same width of 40mm. The properties used
for steel (with suffix s) and rubber (with suffix r) are Es = 210GPa, Gs = 80GPa, qs = 7850kg/m3 and
Er = 1.5MPa, Gr = 0.5MPa, qr = 950kg/m3 respectively. The shear correction factor (shape factor) for
the cross-section is taken to be 2/3. The first four natural frequencies and mode shapes of the beam with
cantilever end conditions are illustrated in Fig. 3 which show that the modes are all flexural involving trans-
verse displacements W only. This is to be expected because of the large extensional stiffnesses of the two
faces. Clearly the modes involving axial displacements U1 and U3 are unlikely to occur in the lower fre-
quency range for such problems.

In the second example, the rubber core of the above problem is replaced by lead keeping the rest of the
structure unaltered. The properties used for lead (with suffix l) are El = 16GPa, Gl = 5.5GPa and
ql = 11100kg/m3. The first four natural frequencies and mode shapes of the cantilever three-layered beam
are shown in Fig. 4, which reveals some interesting features. The first mode is basically a flexural mode of
the beam involving bending displacement W only. Although the second and third modes are dominated by
flexural displacement W, they are nevertheless, coupled modes which show some amount of coupling with
the axial displacements of the top and bottom layers U1 and U3 respectively, but acting in opposite direc-
tions. Interestingly, the fourth mode is a pure axial mode with displacements U1 and U3 in the same direc-
tion with no amount of flexural displacements present.

The third and the final example is that of a symmetric sandwich beam with cantilever end conditions
for which results have been reported by a Mead and Sivakumaran (1966) and Ahmed (1972). The
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Fig. 3. Natural frequencies and mode shapes of the three-layered sandwich beam of example 1 (—) W.
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geometrical dimensions and material properties of the beam are as follows. The length L = 0.7112m, core
thickness h2 = 12.7mm, the face thicknesses h1 = h3 = 0.4572mm, face Young�s modulus E1 = E3 = 69
GPa, face density q1 = q3 = 2680kg/m3, core Young�s modulus E2 = 0.215GPa, core shear modulus
G2 = 82.8MPa, core density q2 = 32.8kg/m3. In order to make the results directly comparable with pub-
lished literature the mass of the core was taken into account, but its axial and bending stiffnesses were
ignored and thus making it deform only in shear. The first four natural frequencies using the present the-
ory are shown in Table 1 along side the results of Mead and Sivakumaran (1966) and Ahmed (1972). The
maximum discrepancy between the results from present theory and the published results is around 2% as
can be seen. Some of these small discrepancies may be attributed to the differences in the rigidity and
mass data used in the analysis. When the axial and bending stiffnesses of the core together with its mass
and shear stiffnesses are all taken into account the four natural frequencies become 36.74Hz, 216.2Hz,
555.7Hz and 982.6Hz, respectively. A comparison of these results with the ones quoted in Table 1
indicates that the inclusion of the axial and bending stiffnesses of the core increases the natural frequen-
cies by around 8%. The axial and bending stiffnesses of the core have relatively small effect on the natural
frequencies of this particular sandwich beam and thus the simpler theories used by previous investigators
seem to be justified for such problems.



0 0.2 0.4 0.6 0.8 1

0

0

0

0

1=321.4 rad/s

2=1864 rad/s

3=4718 rad/s

4=7193 rad/s

ω

ω

ω

ω

ξ

Fig. 4. Natural frequencies and mode shapes of the three-layered sandwich beam of example 2 (- - -) U1; (–––) U3; (—) W.

Table 1
Natural frequencies of a symmetric sandwich beam with canliver end conditions

Frequency no. Natural frequencies (Hz)

Mead and Sivakumaran (1966)
(see Table IV, Column 1)

Ahmed (1972)
(see Table 3, Column 4)

Present theory

1 34.24 33.97 33.74
2 201.9 200.5 198.8
3 520.9 517.0 511.4
4 925.4 918.0 905.1
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6. Conclusions

Starting with a displacement field that assumes that the axial displacements vary linearly in each element,
and that all the layers have a common flexure, the governing differential equations of motion in free vibra-
tion of an asymmetric three-layered beam are developed and used to obtain the dynamic stiffness matrix,
which relates harmonically varying nodal loads with harmonically varying nodal responses. This has been
supported by extensive use of symbolic computation. The application of the dynamic stiffness matrix is
demonstrated to obtain numerical results for three examples. Some of these results are compared with pub-
lished results that show good agreement. The development of the theory presented here demonstrate great
potential for the use of symbolic computation in advanced structural analysis and is expected to pave the
way for further research on the dynamic stiffness formulation of more complex structural elements.
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